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The Images in this book 

are not the result of human 

creativity. The only human 

element is the selected color 

scheme, but the shapes stem 

from the mind of God. 

Dr. Jason Lisle is a Christian astrophysicist who writes and speaks on various topics relating to science and the 
defense of the Christian faith. He graduated from Ohio Wesleyan University where he majored in physics and 
astronomy and minored in mathematics. He then earned a master’s degree and a Ph.D. in astrophysics at the 
University of Colorado in Boulder. Dr. Lisle began working in full-time apologetics ministry, specializing in the 
defense of Genesis. His most well-known book, The Ultimate Proof of Creation, demonstrates that biblical 
creation is the only logical possibility for origins.
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Those who reject God like to explain the 

complexity of biological life by appealing 

to Darwinian evolution — the gradual 

changing of more primitive forms into 

more advanced forms as the unsuccessful 

cases are eliminated.

What if mathematicians 
discovered a secret code 

embedded in math itself? What 
would that mean? Suppose that when 
analyzing certain sets of numbers, 
we found an amazing work of art 
embedded in them, far more intricate 
and complex than any work of man. 
How would we make sense of such 
complex beauty in something as 
simple as numbers? Who put it there?

In fact, just such a code of 
astounding beauty was discovered in 
the 1980s. Artwork of tremendous 
beauty and infinite complexity 
had been hidden in numbers from 
the beginning of time. Yet it lay 
undiscovered until computer 
technology had advanced to the point 
that otherwise tedious computations 
could be performed with rapid 
efficiency. The beautiful images in 
this book are not the work of man. 
They are the very images that were 
discovered in sets of numbers, hidden 
in plain sight. How can we make sense 

of this? Who or what is responsible for these 
amazing shapes? 

I suggest that secular thinking has no 
answer. Those who reject God like to explain 
the complexity of biological life by appealing 
to Darwinian evolution — the gradual 
changing of more primitive forms into more 
advanced forms as the unsuccessful cases 
are eliminated. This view has its problems, 
of course, but my point is that such an 
explanation is not even plausible for numbers 
because numbers do not evolve. It is not 
as though the number 7 gradually evolved 
from the number 3. Numbers have always 
been what they are. Therefore, the artwork 
displayed in this book did not evolve. It has 
always existed, being built into numbers.

I suggest that the Christian worldview alone 
can make sense of this secret code built into 
numbers. As such, the images in this book are 
a demonstration of the truth of the Christian 
worldview. The same God who built beauty 
into the physical world has also built beauty 
into the abstract world of numbers. We don’t 
often think about God creating numbers. We 
tend to think of God creating physical things. 
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When we discover a 

mathematical truth, we have 

discovered something about 

the way God thinks.

 But even abstract 
conceptions  
like numbers 
could not exist apart from God. 

Numbers are a concept of 
quantity. As concepts, they exist 
in the mind. We can represent 
numbers with a written numeral 
like the Arabic numeral “2” 
or the Roman numeral “II.” 
But these are merely physical 
representations of an idea. After all, erasing 
the physical symbol “2” will not cause the 
number 2 to cease to exist! The number itself 
is abstract; it cannot be touched or seen, but it 
exists as a concept of the mind.

We can think about numbers in our mind, 
but we did not create them or the rules 
pertaining to them. It is not as though some 
ancient human simply decided to invent the 
number 2 and arbitrarily decreed that 2 + 
2 should equal 4. No. Humans discovered 
numbers and the relationships between 
them. That means that numbers and the 
relationships between them existed before 
humans. This makes sense in the  

Christian worldview because 
numbers existed in the mind  
of God from the beginning of  

time. The  
mind of God is 
 

responsible for the 
existence of numbers  
and the rules  

governing their relationships. It has  
been the privilege of human beings to  
discover these rules by the gift of logical 
reasoning that the Lord has so graciously 
given. When we discover a mathematical 
truth, we have discovered something about 
the way God thinks.

The images in this book therefore represent 
an infinitesimal glimpse into the mind of God. 
God’s thinking is not only flawlessly rational, 
but supremely beautiful as well. But exactly 
how were these images discovered?  Where 
do they come from? A little background 
information will be helpful.



Sets
The images in the pages of this book are maps 
of sets of numbers. A set of numbers is just 
what you think it is: a group of numbers that 
have something in common. There are all 
kinds of sets. Most sets include some numbers 
and exclude others. Consider the set of even 
numbers. This set includes numbers like 2, 
4, 6, 8, 10, but excludes numbers like 1, 3, 
5, 7, 9. The set of negative numbers includes 
numbers like -3, -4, -5, -1/2, but excludes 
numbers like 2, 5, 7, π, and so on. You can 
even have the set of all numbers, which 
includes everything and excludes nothing. You 
can also have an empty set, which includes no 
numbers at all.

In sets like those mentioned above, you can 
tell if a number belongs or not just by looking 
at it. You know the number 24,389 does not 

belong in the set of even numbers because even 
numbers always end in 0, 2, 4, 6, or 8. You 
know that 57 does not belong in the set of 
negative numbers because there is no negative 
sign in front of it. But with some sets, you 
cannot tell just by looking at the number if it 
belongs or not. You have to do some work. 

Consider the set of prime numbers: those 
natural numbers that cannot be formed by the 
product of two natural numbers other than 
themselves and 1. Does the number 14,351 
belong to this set? You probably cannot 
tell just by looking at it. You have to do 
some work to see if some product of natural 
numbers will generate this number. In fact, this 
number is the product of 113 and 127. So, it 

does not belong to the set of prime numbers.
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The Mandelbrot Set
In the late 1970s and early 1980s, 
mathematicians began using computers to 
analyze solutions in a branch of mathematics 
called complex dynamics. This field involves 
sets of numbers that are defined by functions 
that involve iteration — that is, doing a 
calculation repeatedly. For example, take 
the number 1 and double it. Now double 
the result. Then double that result, and so 
on forever. This iteration will generate the 
sequence of numbers 1, 2, 4, 8, 16, 32, 
64, 128 . . . and so on. We might represent 
this expression as 2z ➞ z, meaning that 
we multiply the number (z) by 2, and this 
becomes the next value of z. This particular 
sequence is unbound, meaning the numbers 
just get larger and larger without limit.

Now, let’s try a different iteration. Take the 
number 1 and divide it by 2. Then divide the 
result by 2, and that result by 2 and so on. 
This iteration produces the numbers 1, ½, ¼, 
1/8, 1/16, 1/32, and so on, getting closer to but 
never actually reaching zero. We represent this 
iteration as z/2 ➞ z. This iteration is bound, 
meaning the numbers never exceed a certain 

value (in this case, 1). So unbound sequences 
get larger without limit, but bound sequences 
have a largest number that none of the 
members will exceed. 

With the iterations mentioned above, 
it is easy to see whether they are bound or 
unbound. But with other iterations, it is not 
so obvious. Some iterations must be done 
many times before we know whether the 
sequence is bound or unbound. In the late 
1970s and early 1980s, computers were 
finally fast enough and affordable enough 
to be useful in this kind of analysis. This 
allowed mathematicians to explore sets that 
are defined by iterative functions. One set 
in particular that caught their interest came 
to be called the Mandelbrot set, after Benoit 
Mandelbrot, who explored and popularized 
this particular number set. 

The Mandelbrot set involves the iteration 
z² + c ➞ z, where z is initially zero. This 
means that the value of the number z is 
squared and then added to a different number 

(c) to become the new value of z, which is 
plugged back into the formula and so on. 

The images in this book 

therefore represent an 

infinitesimal glimpse into 

the mind of God. 



10     f r ac ta ls

The Mandelbrot set is defined as the set of all 
numbers c for which the sequence z remains 
bound according to this iteration. A more 
conventional way to write this is:

z2
n + c = zn+1

Mathematicians use subscripts to indicate 
that the next value of z (which is zn+1) depends 
on the current value of z (which is zn). The 
number “c” is the number we are testing to 
see if it belongs to the Mandelbrot set. So if 
you want to see if the number 1 belongs to 
the set, then c = 1. The symbol zn represents 
a sequence of numbers. So the sequence zn 
might look like this: 0, 1, 2, 5, 26, 677. . . . 
That’s an unbound sequence because it 
gets larger without limit. The subscript n 
represents the position in the sequence starting 
with n = zero. So z0 = 0, and z4 = 26. By 
construction, the first element in the sequence 
is always zero. So z0 = 0 always. After that, 
each value of z depends on the previous value 
of z (and the value of c), according to the 
formula above. So, the symbol zn+1 means 
that the next number in the sequence will be 

the square of the previous number (z2
n) plus c.

The easiest way to get a feel for this is to 
simply do a few examples. We ask, “Is the 
number 1 part of the Mandelbrot set?” since 
we are evaluating the number 1, c = 1. So our 
iterative formula will be:

z2
n + 1 = zn+1

By definition, the first value in the sequence of 
zn is always 0, so z0 = 0. Starting with z = 0, 
we take this number (zero), square it (it’s still 
zero), and add it to c (which is one) to get the 
next z in the sequence. Namely, 02 + 1 = 1. So 
the next value in our sequence of zn is 1. Now 
we do this again. Take 1, square it (it’s still 
1), add it to 1, and this results in the number 
2. Do this again: 2 squared (is 4) plus one is 
5. Do this again: 5 squared (is 25) plus one 
is 26. So our sequence of zn looks like this: 
0, 1, 2, 5, 26, 677. . . . We can see that this 
sequence is unbound. Since the number 1 (c = 
1) generated a sequence of zn that is unbound, 
the number one is not part of the Mandelbrot 
set. We might construct a table to record this:
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	 Number (c)	  Part of Mandelbrot set?

	 1 	 No

What about the number zero? Does it belong? 
To test this, we set c = 0, start with zn = 0, and 
plug it into the formula: 02 + 0 = 0. So the next 
value of z is also 0. Doing this again, we see 
the next value of z is also 0 and so on. Our 
sequence of zn is: 0, 0, 0, 0, 0, 0, 0. . . . Now 
this sequence is clearly bound because the value 
of z will never exceed zero. Since the sequence 
is bound, the number we were checking, 
namely zero (z = 0), is indeed part of the 
Mandelbrot set. So we can add it to our table:

	 Number (c)	  Part of Mandelbrot set?

	 1 	 No

	 0	 Yes

One more example involves a number 
that generates a very interesting sequence. 
Does the number negative one belong to 
the Mandelbrot set? In this case, c = -1 and 
substituting this into the formula we have:

z2
n - 1 = zn+1

As before, our first value (z0) will be zero 
by definition. We square this number (still 
zero) and subtract 1 to get -1. We then take 
this new value of z (negative one) and plug it 
back into the formula. Negative one squared 
(which is positive one) minus one is zero. 
Plugging this back in, we then get the next 
value of z as -1. So our sequence of zn is: 0, 
-1, 0, -1, 0, -1, 0, -1. . . . This sequence cycles 
between two values forever! But clearly the 
sequence is bound. Its absolute magnitude 
never exceeds 1. Therefore, the number -1 is 
indeed part of the Mandelbrot set, and we can 
add it to the table:

	 Number (c)	  Part of Mandelbrot set?

	 1 	 No

	 0	 Yes

	 -1	 Yes

You can see why this branch of mathematics 
flourished after the development of 
computers. It is tedious to do these 
computations by hand. But computers 
can do such tasks quickly and test many 
different numbers to see if they belong to the 
Mandelbrot set.



12      f r ac ta ls

Figure 1.1

Complex Numbers 
There is one more nuance to the Mandelbrot 
set before we get to the really interesting stuff. 
The Mandelbrot is not limited to the so-called 
“real numbers,” but also includes complex 
numbers and “imaginary numbers.” I hate 
the terminology because it is misleading. The 
name suggests that imaginary numbers are 
made-up or somehow less valid than the so-
called “real” numbers. But in fact, both real 
numbers and imaginary numbers do exist. 
They are equally legitimate and are useful. 
And the terminology has become standard.

An imaginary number is a number that 
when squared produces 
a negative number. So 
imaginary numbers are not 
positive (because a positive 
number squared is a positive 
number), and imaginary 
numbers are not negative 
(because a negative number 
squared is a positive number), 
and imaginary numbers 
are not zero (because zero 
squared is zero). So how can 

you have a number that is not positive, not 
negative, and not zero?

To answer this, consider a number line. 
Those numbers to the right of zero are 
positive. Those numbers to the left are 
negative. We can think of the imaginary 
numbers as being on a different axis, directly 
above or below zero (see figure 1.1). Such 
numbers are not to the right (not positive) 
and not to the left (not negative) and yet are 
not zero. This satisfies the definition of an 
imaginary number. 

The Argand Plane
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The imaginary number equivalent of the 
number one is symbolized by a lowercase 
letter i. This number squared is equal to 
negative one. By convention, 
we place i directly above 
zero. It is placed at the same 
distance as the number one 
is from zero. All the other 
imaginary numbers are 
generated by multiplying i by any real number. 
So, 2i, 3i, and so on. These numbers obey the 
ordinary rules of mathematics; it’s just that 
whenever you encounter an i

2
, this is equal to 

negative one. For example, (3i)
2
 = -9.

We might also consider numbers that are 
not on either axis. These are called complex 
numbers. They get their name because they 
have two parts: a real part and an imaginary 
part. For example, the number 3 + 2i is 
complex. It has two parts but is one number. 
We can plot it using the real component as the 
x-coordinate and the imaginary component 
as the y-coordinate. This way of depicting 
complex numbers by coordinates on a surface 
is called an Argand plane.

The Mandelbrot set includes some complex 
(and imaginary) numbers as well. To see 
which numbers belong to the 

Mandelbrot set, 
we simply set  
c equal to the 
number in 
question and see what 
sequence of z emerges. If 

the sequence gets larger without limit, then c 
is not part of the Mandelbrot set. But if the 
sequence of z remains bound, then c is part 
of the Mandelbrot set. Computers can do 
these calculations quickly for 
many numbers. In the 1980s, 
mathematicians and programmers 
began to use computers to make 
a map of the Mandelbrot 
set. When they did this, 
a remarkable pattern 
emerged.

An imaginary number is a 

number that when squared 

produces a negative number.
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will be bound because it cycles. But computers 
have no such comprehension or intuition. 

Since computers have no real understanding, 
in practice, the way they decide if a sequence 
is bound is for their programmer to set an 
“escape value” and an “iteration limit.” In 
other words, if after 1,000 iterations the 
value of z is still smaller than, say, 10, we can 
be pretty confident (though not absolutely 
sure) that the sequence is bound. If, however, 
the value of z is larger than 10 after only 
4 iterations, we can be confident that the 

sequence will grow without 
limit. For the Mandelbrot 
set, mathematicians have 
shown that the escape value 
can be as small as the number 
2. That is, for a given c, if 
any number in the sequence 

zn is larger than 2, then the sequence will 
grow large without limit and is unbound. So 
most programmers set the escape value to 
the number 2. The iteration limit is harder to 
guess, but suffice it to say that larger values 
produce a more accurate map.

So the computer systematically checks 

Using computers, we can 

make a map of the Mandelbrot 

set in the Argand plane.

Mapping the Mandelbrot Set
Using computers, we can make a map of the 
Mandelbrot set in the Argand plane. Recall 
that each point on the plane represents one 
complex number, with the x-coordinate 
representing the real component and the 
y-coordinate representing the imaginary 
component of that number. The computer 
quickly checks each number by running it 
through the formula, generating a sequence of 
zn, which either remains bound (for numbers 
belonging to the Mandelbrot set) or becomes 
larger without limit (for numbers not in the 
Mandelbrot set). 

But how does the computer 
decide if the sequence grows 
larger forever or remains small 
forever? The computer can 
do a lot of iterations quickly, 
but it cannot do them forever! 
We humans do not need to run the iteration 
forever to see what will happen because we 
intuitively understand patterns. We know that 
the sequence 1, 2, 4, 8, 16, 32 . . . will get 
larger without limit because we can see that 
each number is twice the previous number. We 
understand that the pattern 0, -1, 0, -1, 0, -1 



t h e s e c re t  c od e

1 5 Th e Se c re t Cod e      1 5

each point in the Argand plane to see if the 
sequence of z remains bound (and is part of 
the Mandelbrot set) or exceeds the escape 
value (and is therefore not part of the set) 
after the prescribed number of iterations. 
Then the computer assigns a color to the 
point depending on whether it does or does 

not belong to the set. By convention, the 
computer colors the point black if the number 
does belong to the Mandelbrot set and uses 
some other color (such as red or yellow) if it 
does not. What will the map look like when 
the computer has checked every point?
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take a hundred iterations or more for 

the sequence to exceed the escape value. 
By convention, we normally use bright 
colors (like bright yellow) for numbers 
where the sequence of zn grows slowly, 
indicating numbers that are very close 
to (yet not part of) the Mandelbrot set. 
And we use darker colors (like deep 
red) for numbers where the sequence of 
zn grows quickly, indicating numbers 
that are far away from being part of the 
Mandelbrot set. And again, numbers 
that are part of the Mandelbrot set are 
colored black.

So, in figure 1.2, the black regions 
represent all complex numbers that 
belong to the Mandelbrot set. The 
yellow regions represent numbers that 
are very close to the set, but do not 
belong to it. And the dark red regions 
represent numbers that are not even 
close to being part of the Mandelbrot 
set. Using this map, we can easily check 
whether any given number belongs to 
the set simply by checking the color at 

its coordinates because the computer has 
already done the calculation. We can see 
that -1.5 does belong to the Mandelbrot 
set, but +1.5 does not. We can see that 
zero belongs (as we proved earlier), but 
2i does not. And so on.

Now the amazing thing here is not so 
much that we have a convenient map, 
but rather the shape of the map itself. 
No one had imagined that this map of 
the Mandelbrot set would have such an 
amazing and complicated shape. And 
as we will see later, when we zoom in, 
some sections of the Mandelbrot set are 
immensely beautiful. The shape itself 
has wonderful mathematical properties. 
I suppose that is not too surprising given 
that it is a mathematical graph. But the 
particular geometric and mathematical 
properties it exhibits were a surprise 
to everyone. Who knew that such 
properties had been hidden in the little 

formula z2 + c?

Now the Really Cool Part

Naïvely, we might think the map would 
be a circle or some basic shape based 
on the simplicity of the definition of the 
set. After all, z2 + c is a pretty simple 
expression. But instead, the map of 
the Mandelbrot set turns out to be 
remarkably interesting and complex, as 
shown in figure 1.2. This basic shape 
was first discovered and plotted (in black 
and white) in 1978, but at much lower 
resolution than we can do today. 

In the 1980s, Benoit Mandelbrot 
developed software to improve the 
plotting of the Mandelbrot set and its 
exterior, eventually in shades of color that 
represent how quickly the sequence zn 
grows — how many iterations it took to 
exceed the escape value. In other words, 
for numbers that do not belong to the 
Mandelbrot set, the sequence of zn can 
grow large rapidly (such as zn = 0, 10, 
1000, 100000, 1000000000), in which 
case the second iteration has already 
exceeded the escape value of 2. Or, the 
sequence can grow slowly (such as zn = 0, 
1, 1.1, 1.15, 1.19), in which case it might 
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Figure 1.2 

The Mandelbrot set
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Cardioid - sinusoidal spiral - 

mathematical plane curve.

Next, we notice lots of perfect circles 

budding off the cardioid.

Geometry 
At first glance, we notice that the Mandelbrot 
set has three types of geometric shapes. The 
largest and most prominent is the heart-
shaped structure. This shape is called a 
cardioid. It is the shape generated when you 
roll one circle around another of equal size, 
keeping your pencil affixed to a point on 
the rolling circle. The cusp of the cardioid 
is located exactly at ¼, and its opposite side 
ends at exactly -3/4. The cardioid has an area 
of 3π/8. 

Next, we notice lots of perfect circles budding 
off the cardioid. The largest of these circles 
is affixed to the left side of the cardioid, 
is centered exactly on the number -1, and 
has a radius of exactly ¼. Another smaller 
circle grows off of its left side, with another 
growing off of it, and so on, as far as the eye 
can detect. The second largest circles in this 
map are affixed to the top and bottom of the 
cardioid. 
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Thousands of tiny “branches” 

or “dendrites” that are rooted 

in the circles that bud off of the 

cardioid

The third shape we notice are thousands 
of tiny “branches” or “dendrites” that are 
rooted in the circles that bud off of the 
cardioid. All of these dendrites are very 
“wiggly” with one exception: the antenna 
extending directly to the left on the real 
number line is perfectly straight and ends at 
exactly c = -2. It may seem at first that these 
branches are not part of the Mandelbrot set  
because most of them are not colored black. 

But since we see bright yellow in these 
branches, we must conclude that such points 
are extremely close to the Mandelbrot set. In 
other words, the actual (black) threads are too 
thin to be visible but are surrounded by yellow. 
They branch into dendrites, which then branch 
into more dendrites. We will see that this type 
of feature is common in the Mandelbrot set. 

The Mandelbrot set 

has an infinite number 

of smaller versions of itself 

built into itself!
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Figure 1.3

Upper Region of the Mandelbrot set 3

45

7

8
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The Branches are Smart!
Let us explore the dendrites near the top 
of the Mandelbrot map. We can zoom in 
on this area by having the computer check 
these values at finer resolution than we did 
previously. The resulting map (figure 1.3) 
shows that the branches rooted in each circle 
exhibit some fascinating properties. The 
branch growing above the largest circle splits 
into two more, for a total of three that meet at 
an intersection. The next largest circle to the 
left has a branch that splits into a total of five. 
The next largest circle to the left branches into 
7, the next 9, then 11, 13, and so on. These 
branches cover all the odd numbers in perfect 
sequence to infinity. 

Just to the right of the largest circle, on the 
next largest circle, we count four intersecting 
branches. The next largest circle to the right 
has branches that split five ways, the next 
6, 7, 8, etc. So the circles on the right side 
have branches that count all the numbers, 
both even and odd, 
from three to 
infinity! It 

seems that the branches of the Mandelbrot set 
know how to count. But wait — there’s more!

Consider the largest circle in figure 1.3 
(that has three branches) and the next largest 
to its left (which has five branches). Now 
examine the largest circle that is between 
them. It branches into 8 parts. Why is that 
significant? Eight is three plus five — the sum 
of the branches on the surrounding circles. In 
fact, this is the case for all the circles! Each 
circle that is the largest in between two larger 
ones has the sum of their branches. It seems 
that these branches not only know how to 
count to infinity, but they can also add! 
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Figure 1.4

Mini Mandelbrot 
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Mini and Mini-Minis
Returning to figure 1.2, let’s now 
examine one of the most fascinating 
properties of the Mandelbrot set. 
Consider the straight, long spike on the 
left of the image — the only non-wiggly 
dendrite. About two-thirds of the way to 
the left is a “bump,” with tiny branches 
extending above and below. When we 
zoom in on this shape, we find in figure 
1.4 that it is a tiny version of the entire 
Mandelbrot set! This mini-Mandelbrot 
is nearly identical to the original. It has 
the large cardioid with circles budding 
off of it, the largest circle is on the left, 
and a spike is extending to the left. 

But there are slight differences. When 
we compare figures 1.2 and 1.4, we see 
that this baby Mandelbrot has extra 
spikes extending away from it. We 
zoomed in on the spike of the (large) 
Mandelbrot and found that the mini 
version has extra spikes. Can this be 
a coincidence? Second, we note that 
this mini Mandelbrot is growing off 
of another and therefore has a spike 

entering the cusp of the cardioid. The 
large Mandelbrot set lacks this trait 
because it does not stem from a larger 
structure. 

Of course, the mini Mandelbrot 
also has a spike on its left, just like the 
original large version. And this spike 
also has a small bump on it. Zooming in 
on this tiny bump, we find that it too is 
a tiny version of the entire Mandelbrot 
set (figure 1.5). It is a “mini-mini-
Mandelbrot”! At this scale, we find it 
useful to employ more complex color 
schemes to reveal intricate details. In 
this case, as the iterations increase, the 
palette goes from red, to yellow, to light 
blue, to white.

Again, the main features are identical 
to the entire Mandelbrot set — the 
cardioid, the circles, and the branches. 
But since we zoomed in on the spike of 
the mini, which was on the spike of the 
original, this mini-mini-Mandelbrot has 
extra spikes extending away from it. 
Apparently, miniature versions of the 

Mandelbrot set inherit the geometric 
characteristics of the part of the parent 
from which they extend. This mini-mini-
Mandelbrot also has a spike on its left, 
which has a bump. Of course, this turns 
out to be an even smaller version of the 
Mandelbrot map (figure 1.6). Figures 
1.5 and 1.6 were plotted with the same 
color palette for easy comparison. 

The two maps are nearly identical 
apart from size, and the mini-mini-mini 
has gained extra spikes that stem off the 
other spikes. This mini-mini-mini also 
has an even smaller version budding off 
of its tail (figure 1.7), which also has an 
even smaller version budding off of its 
tail (figure 1.8), and so on. This pattern 
apparently continues forever, with each 
smaller version gaining additional spikes 
and complexity. The Mandelbrot set has 
an infinite number of smaller versions 
of itself, built into itself! This type of 
structure is called a fractal.
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Figure 1.6

Figure 1.5

A fractal is any geometric shape that has 
parts that resemble the whole. If we adjusted 
the contrast on the “mini-Mandelbrots” in 
figures 1.2 through 1.8 so that the exterior 
spikes were not visible, they would be virtually 
indistinguishable from the entire Mandelbrot 
set. We would not know if we are viewing the 

Mini Mini

Mini Mini Mini
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Figure 1.7

Figure 1.8

entire map or if we have zoomed in by a factor 
of a billion or a hundred quadrillion. We see 
the same basic type of shape no matter how 
much we zoom in. This property of fractals 
is called scale-invariance. In the next chapter 
we will see that the Mandelbrot set has many 
sections that exhibit scale-invariance. 

Mini5

Mini4




